Properties

Label 193550bx
Number of curves $1$
Conductor $193550$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 193550bx1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1\)
\(79\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 193550bx do not have complex multiplication.

Modular form 193550.2.a.bx

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - 3 q^{3} + q^{4} + 3 q^{6} - q^{8} + 6 q^{9} - 2 q^{11} - 3 q^{12} + q^{16} - 4 q^{17} - 6 q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 193550bx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
193550.b1 193550bx1 \([1, -1, 0, 37133, 2355541]\) \(123210855/123872\) \(-5692740987500000\) \([]\) \(2304000\) \(1.7101\) \(\Gamma_0(N)\)-optimal