Properties

Label 193550.i
Number of curves $1$
Conductor $193550$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 193550.i1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1\)
\(79\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 193550.i do not have complex multiplication.

Modular form 193550.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} - q^{8} - 2 q^{9} - 3 q^{11} - q^{12} - 4 q^{13} + q^{16} - q^{17} + 2 q^{18} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 193550.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
193550.i1 193550ce1 \([1, 1, 0, 198425, -124412875]\) \(18800144375/156574208\) \(-7195624608200000000\) \([]\) \(3525120\) \(2.2997\) \(\Gamma_0(N)\)-optimal