Properties

Label 193550.cb
Number of curves $1$
Conductor $193550$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 193550.cb1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1\)
\(79\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 193550.cb do not have complex multiplication.

Modular form 193550.2.a.cb

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{6} + q^{8} - 2 q^{9} + 4 q^{11} - q^{12} - 4 q^{13} + q^{16} + 2 q^{17} - 2 q^{18} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 193550.cb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
193550.cb1 193550n1 \([1, 1, 1, -65077783, -202537035219]\) \(-42298759185902121413/107219563577344\) \(-77262430916279533568000\) \([]\) \(21522816\) \(3.2687\) \(\Gamma_0(N)\)-optimal