Properties

Label 193550.bl
Number of curves $1$
Conductor $193550$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 193550.bl1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1\)
\(79\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 3 T + 3 T^{2}\) 1.3.ad
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 193550.bl do not have complex multiplication.

Modular form 193550.2.a.bl

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + 3 q^{3} + q^{4} - 3 q^{6} - q^{8} + 6 q^{9} - 3 q^{11} + 3 q^{12} - 4 q^{13} + q^{16} + 3 q^{17} - 6 q^{18} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 193550.bl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
193550.bl1 193550di1 \([1, -1, 0, -6338992, 6144560666]\) \(-612965578258665/611618\) \(-28107908625781250\) \([]\) \(11865600\) \(2.4487\) \(\Gamma_0(N)\)-optimal