Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+y=x^3-x^2-2233x+41368\)
|
(homogenize, simplify) |
|
\(y^2z+yz^2=x^3-x^2z-2233xz^2+41368z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-2894400x+1895346000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(28, 3)$ | $0.49384759252347507207051258205$ | $\infty$ |
Integral points
\( \left(26, 14\right) \), \( \left(26, -15\right) \), \( \left(28, 3\right) \), \( \left(28, -4\right) \)
Invariants
| Conductor: | $N$ | = | \( 1925 \) | = | $5^{2} \cdot 7 \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $-8421875$ | = | $-1 \cdot 5^{6} \cdot 7^{2} \cdot 11 $ |
|
| j-invariant: | $j$ | = | \( -\frac{78843215872}{539} \) | = | $-1 \cdot 2^{18} \cdot 7^{-2} \cdot 11^{-1} \cdot 67^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.50971928683164605082529861340$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.29499966938540413647508105321$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0060400503962048$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.594582961045077$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.49384759252347507207051258205$ |
|
| Real period: | $\Omega$ | ≈ | $2.0780809186759202062075228984$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $2.0525105175141491617839259231 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.052510518 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 2.078081 \cdot 0.493848 \cdot 2}{1^2} \\ & \approx 2.052510518\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 720 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $5$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $11$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 9.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 6930 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \), index $144$, genus $3$, and generators
$\left(\begin{array}{rr} 5806 & 1395 \\ 3645 & 5536 \end{array}\right),\left(\begin{array}{rr} 6913 & 18 \\ 6912 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1201 & 2790 \\ 540 & 4921 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 81 & 73 \end{array}\right),\left(\begin{array}{rr} 5543 & 0 \\ 0 & 6929 \end{array}\right),\left(\begin{array}{rr} 11 & 2790 \\ 2610 & 1891 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 10 & 181 \end{array}\right)$.
The torsion field $K:=\Q(E[6930])$ is a degree-$2069286912000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/6930\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 275 = 5^{2} \cdot 11 \) |
| $5$ | additive | $14$ | \( 77 = 7 \cdot 11 \) |
| $7$ | nonsplit multiplicative | $8$ | \( 275 = 5^{2} \cdot 11 \) |
| $11$ | nonsplit multiplicative | $12$ | \( 175 = 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 1925a
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 77b3, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{5}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.44.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.21296.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.118641513375.4 | \(\Z/3\Z\) | not in database |
| $6$ | 6.6.300125.1 | \(\Z/9\Z\) | not in database |
| $6$ | 6.2.242000.1 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | 12.0.5862477590966390625.1 | \(\Z/9\Z\) | not in database |
| $12$ | 12.0.7086244000000.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.0.827666451352919321999884113624000000000.1 | \(\Z/6\Z\) | not in database |
| $18$ | 18.6.196165476760726088000000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ss | ord | add | nonsplit | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | 2,3 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 1,1 |
| $\mu$-invariant(s) | 0,0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.