Properties

Label 190740.p
Number of curves $4$
Conductor $190740$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 190740.p have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(11\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 190740.p do not have complex multiplication.

Modular form 190740.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + 4 q^{7} + q^{9} + q^{11} - 4 q^{13} - q^{15} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 190740.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
190740.p1 190740z4 \([0, -1, 0, -449780, -62919528]\) \(1628514404944/664335375\) \(4105072884020064000\) \([2]\) \(3981312\) \(2.2692\)  
190740.p2 190740z2 \([0, -1, 0, -207020, 36320760]\) \(158792223184/16335\) \(100937520541440\) \([2]\) \(1327104\) \(1.7199\)  
190740.p3 190740z1 \([0, -1, 0, -11945, 661050]\) \(-488095744/200475\) \(-77423666324400\) \([2]\) \(663552\) \(1.3733\) \(\Gamma_0(N)\)-optimal
190740.p4 190740z3 \([0, -1, 0, 92095, -7214778]\) \(223673040896/187171875\) \(-72285984762750000\) \([2]\) \(1990656\) \(1.9226\)