Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-29790x+1959876\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-29790xz^2+1959876z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-38607867x+91555798230\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(24, 1110)$ | $0.17374891156459922351854350288$ | $\infty$ |
$(126, 396)$ | $0.84290532564547325002892417745$ | $\infty$ |
$(92, -46)$ | $0$ | $2$ |
Integral points
\( \left(-196, 626\right) \), \( \left(-196, -430\right) \), \( \left(-180, 1314\right) \), \( \left(-180, -1134\right) \), \( \left(-150, 1824\right) \), \( \left(-150, -1674\right) \), \( \left(-108, 2034\right) \), \( \left(-108, -1926\right) \), \( \left(-36, 1746\right) \), \( \left(-36, -1710\right) \), \( \left(24, 1110\right) \), \( \left(24, -1134\right) \), \( \left(42, 864\right) \), \( \left(42, -906\right) \), \( \left(60, 594\right) \), \( \left(60, -654\right) \), \( \left(84, 186\right) \), \( \left(84, -270\right) \), \( \left(90, 54\right) \), \( \left(90, -144\right) \), \( \left(92, -46\right) \), \( \left(108, 18\right) \), \( \left(108, -126\right) \), \( \left(126, 396\right) \), \( \left(126, -522\right) \), \( \left(128, 434\right) \), \( \left(128, -562\right) \), \( \left(156, 978\right) \), \( \left(156, -1134\right) \), \( \left(228, 2538\right) \), \( \left(228, -2766\right) \), \( \left(288, 4014\right) \), \( \left(288, -4302\right) \), \( \left(398, 7094\right) \), \( \left(398, -7492\right) \), \( \left(576, 12978\right) \), \( \left(576, -13554\right) \), \( \left(636, 15186\right) \), \( \left(636, -15822\right) \), \( \left(1116, 36306\right) \), \( \left(1116, -37422\right) \), \( \left(2268, 106578\right) \), \( \left(2268, -108846\right) \), \( \left(2796, 146178\right) \), \( \left(2796, -148974\right) \), \( \left(12366, 1368828\right) \), \( \left(12366, -1381194\right) \), \( \left(228708, 109261674\right) \), \( \left(228708, -109490382\right) \)
Invariants
Conductor: | $N$ | = | \( 19074 \) | = | $2 \cdot 3 \cdot 11 \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $28401389862912$ | = | $2^{16} \cdot 3^{6} \cdot 11^{2} \cdot 17^{3} $ |
|
j-invariant: | $j$ | = | \( \frac{595099203230897}{5780865024} \) | = | $2^{-16} \cdot 3^{-6} \cdot 11^{-2} \cdot 19^{6} \cdot 233^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.4010793351933183708740827985$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.69277599917926435081169914403$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0972997933098383$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.314025768683747$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.14401532845745473011551249846$ |
|
Real period: | $\Omega$ | ≈ | $0.66751555748401474995515643868$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 384 $ = $ 2^{4}\cdot( 2 \cdot 3 )\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $9.2287173371060532641650249318 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 9.228717337 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.667516 \cdot 0.144015 \cdot 384}{2^2} \\ & \approx 9.228717337\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 172032 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $16$ | $I_{16}$ | split multiplicative | -1 | 1 | 16 | 16 |
$3$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
$11$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$17$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.32 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 8976 = 2^{4} \cdot 3 \cdot 11 \cdot 17 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 3708 & 19 \\ 7637 & 388 \end{array}\right),\left(\begin{array}{rr} 6739 & 12 \\ 4 & 7 \end{array}\right),\left(\begin{array}{rr} 8961 & 16 \\ 8960 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 13 & 8 \\ 8 & 5 \end{array}\right),\left(\begin{array}{rr} 11 & 8 \\ 8848 & 8883 \end{array}\right),\left(\begin{array}{rr} 6533 & 26 \\ 510 & 7385 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 12 \\ 8876 & 8867 \end{array}\right),\left(\begin{array}{rr} 5989 & 26 \\ 8670 & 7385 \end{array}\right),\left(\begin{array}{rr} 1129 & 12 \\ 2248 & 7 \end{array}\right)$.
The torsion field $K:=\Q(E[8976])$ is a degree-$12706224537600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/8976\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 17 \) |
$3$ | split multiplicative | $4$ | \( 6358 = 2 \cdot 11 \cdot 17^{2} \) |
$11$ | split multiplicative | $12$ | \( 1734 = 2 \cdot 3 \cdot 17^{2} \) |
$17$ | additive | $82$ | \( 66 = 2 \cdot 3 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 19074.z
consists of 2 curves linked by isogenies of
degree 2.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{17}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.78608.2 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.6179217664.3 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.458003999456784.4 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | split | ord | ord | split | ord | add | ord | ord | ord | ord | ord | ss | ss | ord |
$\lambda$-invariant(s) | 6 | 3 | 2 | 6 | 3 | 2 | - | 2 | 2 | 2 | 2 | 2 | 2,2 | 2,2 | 2 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.