Properties

Label 19074.u
Number of curves $1$
Conductor $19074$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 19074.u1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(11\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 5 T + 7 T^{2}\) 1.7.f
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 19074.u do not have complex multiplication.

Modular form 19074.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + 2 q^{5} - q^{6} - 5 q^{7} + q^{8} + q^{9} + 2 q^{10} + q^{11} - q^{12} - q^{13} - 5 q^{14} - 2 q^{15} + q^{16} + q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 19074.u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
19074.u1 19074u1 \([1, 1, 1, -57, -201]\) \(-70945777/5808\) \(-1678512\) \([]\) \(4608\) \(-0.059588\) \(\Gamma_0(N)\)-optimal