Properties

Label 190575f
Number of curves $1$
Conductor $190575$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 190575f1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + 7 T + 29 T^{2}\) 1.29.h
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 190575f do not have complex multiplication.

Modular form 190575.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} + 2 q^{4} + q^{7} + q^{13} - 2 q^{14} - 4 q^{16} + 3 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 190575f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
190575.p1 190575f1 \([0, 0, 1, -358875, 82749026]\) \(210720960000000/16807\) \(407695382325\) \([]\) \(1105920\) \(1.6733\) \(\Gamma_0(N)\)-optimal