Properties

Label 190400.bd
Number of curves $1$
Conductor $190400$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 190400.bd1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 5 T + 23 T^{2}\) 1.23.f
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 190400.bd do not have complex multiplication.

Modular form 190400.2.a.bd

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} + q^{7} + q^{9} + 6 q^{11} + q^{13} + q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 190400.bd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
190400.bd1 190400j1 \([0, 1, 0, 43367, 9458613]\) \(9019694698496/43750721875\) \(-43750721875000000\) \([]\) \(1881600\) \(1.8754\) \(\Gamma_0(N)\)-optimal