Learn more

Refine search


Results (1-50 of 240 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
189630.a1 189630.a \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $11.53018988$ $[1, -1, 0, -262940715, 2611632248581]$ \(y^2+xy=x^3-x^2-262940715x+2611632248581\) 36120.2.0.? $[(-30568375/41, 81577329289/41)]$
189630.b1 189630.b \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $1.028784927$ $[1, -1, 0, 21600, -972000]$ \(y^2+xy=x^3-x^2+21600x-972000\) 40.2.0.a.1 $[(93, 1308)]$
189630.c1 189630.c \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -344430, -84503084]$ \(y^2+xy=x^3-x^2-344430x-84503084\) 36120.2.0.? $[ ]$
189630.d1 189630.d \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\Z/2\Z$ $13.96058034$ $[1, -1, 0, -131220735, -576974789875]$ \(y^2+xy=x^3-x^2-131220735x-576974789875\) 2.3.0.a.1, 56.6.0.a.1, 860.6.0.?, 12040.12.0.? $[(18719731/29, 66654851570/29)]$
189630.d2 189630.d \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\Z/2\Z$ $6.980290172$ $[1, -1, 0, -4777215, -16602397939]$ \(y^2+xy=x^3-x^2-4777215x-16602397939\) 2.3.0.a.1, 56.6.0.d.1, 430.6.0.?, 12040.12.0.? $[(20827, 2975818)]$
189630.e1 189630.e \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -46755, -2962625]$ \(y^2+xy=x^3-x^2-46755x-2962625\) 2.3.0.a.1, 56.6.0.a.1, 1720.6.0.?, 6020.6.0.?, 12040.12.0.? $[ ]$
189630.e2 189630.e \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -15885, 735601]$ \(y^2+xy=x^3-x^2-15885x+735601\) 2.3.0.a.1, 56.6.0.d.1, 1720.6.0.?, 3010.6.0.?, 12040.12.0.? $[ ]$
189630.f1 189630.f \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 277380, -21525716304]$ \(y^2+xy=x^3-x^2+277380x-21525716304\) 1720.2.0.? $[ ]$
189630.g1 189630.g \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -584635620, 5440619780420]$ \(y^2+xy=x^3-x^2-584635620x+5440619780420\) 2.3.0.a.1, 60.6.0.a.1, 516.6.0.?, 860.6.0.?, 2580.12.0.? $[ ]$
189630.g2 189630.g \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -584620920, 5440907068400]$ \(y^2+xy=x^3-x^2-584620920x+5440907068400\) 2.3.0.a.1, 60.6.0.b.1, 258.6.0.?, 860.6.0.?, 2580.12.0.? $[ ]$
189630.h1 189630.h \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $12.00848642$ $[1, -1, 0, -11715615, -15441378219]$ \(y^2+xy=x^3-x^2-11715615x-15441378219\) 40.2.0.a.1 $[(5563395/37, 3120329178/37)]$
189630.i1 189630.i \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -15885, 775291]$ \(y^2+xy=x^3-x^2-15885x+775291\) 1720.2.0.? $[ ]$
189630.j1 189630.j \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $18.23593574$ $[1, -1, 0, -9654675, -11544216139]$ \(y^2+xy=x^3-x^2-9654675x-11544216139\) 1032.2.0.? $[(1445644843/631, 8446515757921/631)]$
189630.k1 189630.k \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -19510290, -42445622444]$ \(y^2+xy=x^3-x^2-19510290x-42445622444\) 1720.2.0.? $[ ]$
189630.l1 189630.l \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\Z/2\Z$ $1.694285722$ $[1, -1, 0, -253815, -49107619]$ \(y^2+xy=x^3-x^2-253815x-49107619\) 2.3.0.a.1, 42.6.0.a.1, 172.6.0.?, 3612.12.0.? $[(-290, -71)]$
189630.l2 189630.l \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\Z/2\Z$ $3.388571445$ $[1, -1, 0, -11895, -1159075]$ \(y^2+xy=x^3-x^2-11895x-1159075\) 2.3.0.a.1, 84.6.0.?, 172.6.0.?, 1806.6.0.?, 3612.12.0.? $[(331, 5410)]$
189630.m1 189630.m \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -262845, -51967035]$ \(y^2+xy=x^3-x^2-262845x-51967035\) 1720.2.0.? $[ ]$
189630.n1 189630.n \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 195795, 101532325]$ \(y^2+xy=x^3-x^2+195795x+101532325\) 1720.2.0.? $[ ]$
189630.o1 189630.o \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\Z/2\Z$ $2.591263724$ $[1, -1, 0, -589185, 174215691]$ \(y^2+xy=x^3-x^2-589185x+174215691\) 2.3.0.a.1, 40.6.0.b.1, 516.6.0.?, 5160.12.0.? $[(447, -345)]$
189630.o2 189630.o \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\Z/2\Z$ $1.295631862$ $[1, -1, 0, -37935, 2556441]$ \(y^2+xy=x^3-x^2-37935x+2556441\) 2.3.0.a.1, 40.6.0.c.1, 258.6.0.?, 5160.12.0.? $[(72, 405)]$
189630.p1 189630.p \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\Z/2\Z$ $11.87485905$ $[1, -1, 0, -2772135, -1771493459]$ \(y^2+xy=x^3-x^2-2772135x-1771493459\) 2.3.0.a.1, 20.6.0.b.1, 258.6.0.?, 2580.12.0.? $[(1732938/17, 2166898105/17)]$
189630.p2 189630.p \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\Z/2\Z$ $5.937429525$ $[1, -1, 0, -1669635, -3195261959]$ \(y^2+xy=x^3-x^2-1669635x-3195261959\) 2.3.0.a.1, 20.6.0.a.1, 516.6.0.?, 2580.12.0.? $[(23592, 3605923)]$
189630.q1 189630.q \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -135482265, 607009972981]$ \(y^2+xy=x^3-x^2-135482265x+607009972981\) 2.3.0.a.1, 24.6.0.a.1, 860.6.0.?, 5160.12.0.? $[ ]$
189630.q2 189630.q \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -8421345, 9594939325]$ \(y^2+xy=x^3-x^2-8421345x+9594939325\) 2.3.0.a.1, 24.6.0.d.1, 430.6.0.?, 5160.12.0.? $[ ]$
189630.r1 189630.r \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -15128955, -9835300175]$ \(y^2+xy=x^3-x^2-15128955x-9835300175\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 21.8.0-3.a.1.1, $\ldots$ $[ ]$
189630.r2 189630.r \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -7746615, 8300346781]$ \(y^2+xy=x^3-x^2-7746615x+8300346781\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 21.8.0-3.a.1.2, $\ldots$ $[ ]$
189630.r3 189630.r \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -7305615, 9286687381]$ \(y^2+xy=x^3-x^2-7305615x+9286687381\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 21.8.0-3.a.1.2, $\ldots$ $[ ]$
189630.r4 189630.r \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 53777295, -74510706425]$ \(y^2+xy=x^3-x^2+53777295x-74510706425\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 21.8.0-3.a.1.1, $\ldots$ $[ ]$
189630.s1 189630.s \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\Z/2\Z$ $3.249361966$ $[1, -1, 0, -144508065, 668666718845]$ \(y^2+xy=x^3-x^2-144508065x+668666718845\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 21.8.0-3.a.1.2, 42.24.0-6.a.1.4, $\ldots$ $[(12658, 925063)]$
189630.s2 189630.s \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\Z/2\Z$ $6.498723932$ $[1, -1, 0, -9032865, 10446912125]$ \(y^2+xy=x^3-x^2-9032865x+10446912125\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 21.8.0-3.a.1.2, 42.24.0-6.a.1.4, $\ldots$ $[(2455/2, 570755/2)]$
189630.s3 189630.s \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\Z/2\Z$ $1.083120655$ $[1, -1, 0, -1811490, 887971300]$ \(y^2+xy=x^3-x^2-1811490x+887971300\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 21.8.0-3.a.1.1, 42.24.0-6.a.1.3, $\ldots$ $[(996, 7930)]$
189630.s4 189630.s \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\Z/2\Z$ $2.166241310$ $[1, -1, 0, -341490, -59590700]$ \(y^2+xy=x^3-x^2-341490x-59590700\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 21.8.0-3.a.1.1, 42.24.0-6.a.1.3, $\ldots$ $[(2676, 133510)]$
189630.t1 189630.t \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -5175, -208139]$ \(y^2+xy=x^3-x^2-5175x-208139\) 1720.2.0.? $[ ]$
189630.u1 189630.u \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1660213305, -26036765059649]$ \(y^2+xy=x^3-x^2-1660213305x-26036765059649\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 21.8.0-3.a.1.1, 24.24.0.ca.1, $\ldots$ $[ ]$
189630.u2 189630.u \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -103717035, -407186178575]$ \(y^2+xy=x^3-x^2-103717035x-407186178575\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 21.8.0-3.a.1.1, 24.24.0.cd.1, $\ldots$ $[ ]$
189630.u3 189630.u \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -21241215, -32975760875]$ \(y^2+xy=x^3-x^2-21241215x-32975760875\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 21.8.0-3.a.1.2, 24.24.0.ca.1, $\ldots$ $[ ]$
189630.u4 189630.u \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 2096505, -2734743299]$ \(y^2+xy=x^3-x^2+2096505x-2734743299\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 21.8.0-3.a.1.2, 24.24.0.cd.1, $\ldots$ $[ ]$
189630.v1 189630.v \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\Z/2\Z$ $1.025071729$ $[1, -1, 0, -142305, 20693105]$ \(y^2+xy=x^3-x^2-142305x+20693105\) 2.3.0.a.1, 60.6.0.a.1, 516.6.0.?, 860.6.0.?, 2580.12.0.? $[(268, 1189)]$
189630.v2 189630.v \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\Z/2\Z$ $2.050143458$ $[1, -1, 0, -10005, 239525]$ \(y^2+xy=x^3-x^2-10005x+239525\) 2.3.0.a.1, 60.6.0.b.1, 258.6.0.?, 860.6.0.?, 2580.12.0.? $[(25, 55)]$
189630.w1 189630.w \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -38972355, -92059709995]$ \(y^2+xy=x^3-x^2-38972355x-92059709995\) 2.3.0.a.1, 60.6.0.a.1, 516.6.0.?, 860.6.0.?, 2580.12.0.? $[ ]$
189630.w2 189630.w \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -5103555, 2278445525]$ \(y^2+xy=x^3-x^2-5103555x+2278445525\) 2.3.0.a.1, 60.6.0.b.1, 258.6.0.?, 860.6.0.?, 2580.12.0.? $[ ]$
189630.x1 189630.x \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $13.16455634$ $[1, -1, 0, -621315, -193596075]$ \(y^2+xy=x^3-x^2-621315x-193596075\) 36120.2.0.? $[(3370887/41, 5539000734/41)]$
189630.y1 189630.y \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -450, 20250]$ \(y^2+xy=x^3-x^2-450x+20250\) 1720.2.0.? $[ ]$
189630.z1 189630.z \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 7562700, -2472313264]$ \(y^2+xy=x^3-x^2+7562700x-2472313264\) 1032.2.0.? $[ ]$
189630.ba1 189630.ba \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\Z/2\Z$ $3.521904543$ $[1, -1, 0, -84240, 8697856]$ \(y^2+xy=x^3-x^2-84240x+8697856\) 2.3.0.a.1, 20.6.0.b.1, 258.6.0.?, 2580.12.0.? $[(83, 1466)]$
189630.ba2 189630.ba \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\Z/2\Z$ $1.760952271$ $[1, -1, 0, 92160, 40202896]$ \(y^2+xy=x^3-x^2+92160x+40202896\) 2.3.0.a.1, 20.6.0.a.1, 516.6.0.?, 2580.12.0.? $[(-180, 4304)]$
189630.bb1 189630.bb \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -12372705, -16917920699]$ \(y^2+xy=x^3-x^2-12372705x-16917920699\) 3.4.0.a.1, 21.8.0-3.a.1.1, 1032.8.0.?, 2408.2.0.?, 7224.16.0.? $[ ]$
189630.bb2 189630.bb \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 522135, -119585075]$ \(y^2+xy=x^3-x^2+522135x-119585075\) 3.4.0.a.1, 21.8.0-3.a.1.2, 1032.8.0.?, 2408.2.0.?, 7224.16.0.? $[ ]$
189630.bc1 189630.bc \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $56.33955815$ $[1, -1, 0, 12766098420, 328942442869200]$ \(y^2+xy=x^3-x^2+12766098420x+328942442869200\) 36120.2.0.? $[(144091265737760607332349777/70461238271, 9407062297643419233433295406180162108924/70461238271)]$
189630.bd1 189630.bd \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 43 \) $1$ $\Z/2\Z$ $22.67038293$ $[1, -1, 0, -73107225, -240577441875]$ \(y^2+xy=x^3-x^2-73107225x-240577441875\) 2.3.0.a.1, 24.6.0.a.1, 860.6.0.?, 5160.12.0.? $[(100441439319/3077, 12125884172445105/3077)]$
Next   displayed columns for results