Properties

Label 189630dx
Number of curves $2$
Conductor $189630$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("dx1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 189630dx

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
189630.bd2 189630dx1 [1, -1, 0, -4522905, -3838086099] [2] 11612160 \(\Gamma_0(N)\)-optimal
189630.bd1 189630dx2 [1, -1, 0, -73107225, -240577441875] [2] 23224320  

Rank

sage: E.rank()
 

The elliptic curves in class 189630dx have rank \(1\).

Complex multiplication

The elliptic curves in class 189630dx do not have complex multiplication.

Modular form 189630.2.a.dx

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{4} - q^{5} - q^{8} + q^{10} + 4q^{11} - 4q^{13} + q^{16} + 4q^{17} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.