Properties

Label 187395.bd
Number of curves $1$
Conductor $187395$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 187395.bd1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(13\)\(1 - T\)
\(31\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 187395.bd do not have complex multiplication.

Modular form 187395.2.a.bd

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{2} + q^{3} + 2 q^{4} + q^{5} + 2 q^{6} + 3 q^{7} + q^{9} + 2 q^{10} + q^{11} + 2 q^{12} + q^{13} + 6 q^{14} + q^{15} - 4 q^{16} + q^{17} + 2 q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 187395.bd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
187395.bd1 187395z1 \([0, 1, 1, -182910, -30979339]\) \(-762549907456/24024195\) \(-21321561495561795\) \([]\) \(2489760\) \(1.9096\) \(\Gamma_0(N)\)-optimal