Properties

Label 187200ng
Number of curves $2$
Conductor $187200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ng1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 187200ng have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(17\) \( 1 + 5 T + 17 T^{2}\) 1.17.f
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 187200ng do not have complex multiplication.

Modular form 187200.2.a.ng

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{7} - 6 q^{11} - q^{13} - 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 187200ng

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
187200.ky1 187200ng1 \([0, 0, 0, -73200, -731000]\) \(3718856704/2132325\) \(24871438800000000\) \([2]\) \(1179648\) \(1.8357\) \(\Gamma_0(N)\)-optimal
187200.ky2 187200ng2 \([0, 0, 0, 291300, -5834000]\) \(14647977776/8555625\) \(-1596684960000000000\) \([2]\) \(2359296\) \(2.1823\)