Properties

Label 187200.lj
Number of curves $2$
Conductor $187200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("lj1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 187200.lj

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
187200.lj1 187200fh2 \([0, 0, 0, -662700, -186014000]\) \(10779215329/1232010\) \(3678762147840000000\) \([2]\) \(3538944\) \(2.2947\)  
187200.lj2 187200fh1 \([0, 0, 0, 57300, -14654000]\) \(6967871/35100\) \(-104808038400000000\) \([2]\) \(1769472\) \(1.9481\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 187200.lj have rank \(1\).

Complex multiplication

The elliptic curves in class 187200.lj do not have complex multiplication.

Modular form 187200.2.a.lj

sage: E.q_eigenform(10)
 
\(q + 2q^{7} - 4q^{11} - q^{13} + 8q^{17} - 6q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.