sage: E = EllipticCurve([0, 0, 0, -14700, 146000])
gp: E = ellinit([0, 0, 0, -14700, 146000])
magma: E := EllipticCurve([0, 0, 0, -14700, 146000]);
oscar: E = elliptic_curve([0, 0, 0, -14700, 146000])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( − 80 , 900 ) (-80, 900) ( − 8 0 , 9 0 0 ) 1.2833811965192905313115565450 1.2833811965192905313115565450 1 . 2 8 3 3 8 1 1 9 6 5 1 9 2 9 0 5 3 1 3 1 1 5 5 6 5 4 5 0 ∞ \infty ∞
( 10 , 0 ) (10, 0) ( 1 0 , 0 ) 0 0 0 2 2 2
( − 80 , ± 900 ) (-80,\pm 900) ( − 8 0 , ± 9 0 0 ) , ( 10 , 0 ) \left(10, 0\right) ( 1 0 , 0 ) , ( 170 , ± 1600 ) (170,\pm 1600) ( 1 7 0 , ± 1 6 0 0 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
187200 187200 1 8 7 2 0 0 = 2 6 ⋅ 3 2 ⋅ 5 2 ⋅ 13 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 2 6 ⋅ 3 2 ⋅ 5 2 ⋅ 1 3
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
194088960000000 194088960000000 1 9 4 0 8 8 9 6 0 0 0 0 0 0 0 = 2 18 ⋅ 3 6 ⋅ 5 7 ⋅ 13 2^{18} \cdot 3^{6} \cdot 5^{7} \cdot 13 2 1 8 ⋅ 3 6 ⋅ 5 7 ⋅ 1 3
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
117649 65 \frac{117649}{65} 6 5 1 1 7 6 4 9 = 5 − 1 ⋅ 7 6 ⋅ 1 3 − 1 5^{-1} \cdot 7^{6} \cdot 13^{-1} 5 − 1 ⋅ 7 6 ⋅ 1 3 − 1
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 1.4321306340988612754919711281 1.4321306340988612754919711281 1 . 4 3 2 1 3 0 6 3 4 0 9 8 8 6 1 2 7 5 4 9 1 9 7 1 1 2 8 1
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ − 0.96161523729216172163187933916 -0.96161523729216172163187933916 − 0 . 9 6 1 6 1 5 2 3 7 2 9 2 1 6 1 7 2 1 6 3 1 8 7 9 3 3 9 1 6
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.9568076435408001 0.9568076435408001 0 . 9 5 6 8 0 7 6 4 3 5 4 0 8 0 0 1
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 3.327894138577062 3.327894138577062 3 . 3 2 7 8 9 4 1 3 8 5 7 7 0 6 2
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 1 1 1
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 1.2833811965192905313115565450 1.2833811965192905313115565450 1 . 2 8 3 3 8 1 1 9 6 5 1 9 2 9 0 5 3 1 3 1 1 5 5 6 5 4 5 0
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 0.49138504492952437660484169351 0.49138504492952437660484169351 0 . 4 9 1 3 8 5 0 4 4 9 2 9 5 2 4 3 7 6 6 0 4 8 4 1 6 9 3 5 1
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 32 32 3 2
= 2 2 ⋅ 2 ⋅ 2 2 ⋅ 1 2^{2}\cdot2\cdot2^{2}\cdot1 2 2 ⋅ 2 ⋅ 2 2 ⋅ 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 5.0450746153067066497462555997 5.0450746153067066497462555997 5 . 0 4 5 0 7 4 6 1 5 3 0 6 7 0 6 6 4 9 7 4 6 2 5 5 5 9 9 7
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
5.045074615 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.491385 ⋅ 1.283381 ⋅ 32 2 2 ≈ 5.045074615 \begin{aligned} 5.045074615 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.491385 \cdot 1.283381 \cdot 32}{2^2} \\ & \approx 5.045074615\end{aligned} 5 . 0 4 5 0 7 4 6 1 5 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 0 . 4 9 1 3 8 5 ⋅ 1 . 2 8 3 3 8 1 ⋅ 3 2 ≈ 5 . 0 4 5 0 7 4 6 1 5
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([0, 0, 0, -14700, 146000]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([0, 0, 0, -14700, 146000]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
187200.2.a.u
q − 4 q 7 − 2 q 11 − q 13 + 2 q 17 − 6 q 19 + O ( q 20 ) q - 4 q^{7} - 2 q^{11} - q^{13} + 2 q^{17} - 6 q^{19} + O(q^{20}) q − 4 q 7 − 2 q 1 1 − q 1 3 + 2 q 1 7 − 6 q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 4 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[1169, 1032, 780, 1559], [779, 1032, 0, 1559], [1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [3, 8, 28, 75], [1553, 8, 1552, 9], [5, 8, 48, 77], [98, 519, 1329, 1556], [328, 3, 1245, 1042], [1039, 0, 0, 1559]]
GL(2,Integers(1560)).subgroup(gens)
magma: Gens := [[1169, 1032, 780, 1559], [779, 1032, 0, 1559], [1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [3, 8, 28, 75], [1553, 8, 1552, 9], [5, 8, 48, 77], [98, 519, 1329, 1556], [328, 3, 1245, 1042], [1039, 0, 0, 1559]];
sub<GL(2,Integers(1560))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 1560 = 2 3 ⋅ 3 ⋅ 5 ⋅ 13 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 1 5 6 0 = 2 3 ⋅ 3 ⋅ 5 ⋅ 1 3 , index 48 48 4 8 , genus 0 0 0 , and generators
( 1169 1032 780 1559 ) , ( 779 1032 0 1559 ) , ( 1 0 8 1 ) , ( 1 8 0 1 ) , ( 1 4 4 17 ) , ( 3 8 28 75 ) , ( 1553 8 1552 9 ) , ( 5 8 48 77 ) , ( 98 519 1329 1556 ) , ( 328 3 1245 1042 ) , ( 1039 0 0 1559 ) \left(\begin{array}{rr}
1169 & 1032 \\
780 & 1559
\end{array}\right),\left(\begin{array}{rr}
779 & 1032 \\
0 & 1559
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
8 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 8 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
4 & 17
\end{array}\right),\left(\begin{array}{rr}
3 & 8 \\
28 & 75
\end{array}\right),\left(\begin{array}{rr}
1553 & 8 \\
1552 & 9
\end{array}\right),\left(\begin{array}{rr}
5 & 8 \\
48 & 77
\end{array}\right),\left(\begin{array}{rr}
98 & 519 \\
1329 & 1556
\end{array}\right),\left(\begin{array}{rr}
328 & 3 \\
1245 & 1042
\end{array}\right),\left(\begin{array}{rr}
1039 & 0 \\
0 & 1559
\end{array}\right) ( 1 1 6 9 7 8 0 1 0 3 2 1 5 5 9 ) , ( 7 7 9 0 1 0 3 2 1 5 5 9 ) , ( 1 8 0 1 ) , ( 1 0 8 1 ) , ( 1 4 4 1 7 ) , ( 3 2 8 8 7 5 ) , ( 1 5 5 3 1 5 5 2 8 9 ) , ( 5 4 8 8 7 7 ) , ( 9 8 1 3 2 9 5 1 9 1 5 5 6 ) , ( 3 2 8 1 2 4 5 3 1 0 4 2 ) , ( 1 0 3 9 0 0 1 5 5 9 ) .
The torsion field K : = Q ( E [ 1560 ] ) K:=\Q(E[1560]) K : = Q ( E [ 1 5 6 0 ] ) is a degree-19322634240 19322634240 1 9 3 2 2 6 3 4 2 4 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 1560 Z ) \GL_2(\Z/1560\Z) GL 2 ( Z / 1 5 6 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
additive
2 2 2
2925 = 3 2 ⋅ 5 2 ⋅ 13 2925 = 3^{2} \cdot 5^{2} \cdot 13 2 9 2 5 = 3 2 ⋅ 5 2 ⋅ 1 3
3 3 3
additive
6 6 6
20800 = 2 6 ⋅ 5 2 ⋅ 13 20800 = 2^{6} \cdot 5^{2} \cdot 13 2 0 8 0 0 = 2 6 ⋅ 5 2 ⋅ 1 3
5 5 5
additive
18 18 1 8
7488 = 2 6 ⋅ 3 2 ⋅ 13 7488 = 2^{6} \cdot 3^{2} \cdot 13 7 4 8 8 = 2 6 ⋅ 3 2 ⋅ 1 3
13 13 1 3
nonsplit multiplicative
14 14 1 4
14400 = 2 6 ⋅ 3 2 ⋅ 5 2 14400 = 2^{6} \cdot 3^{2} \cdot 5^{2} 1 4 4 0 0 = 2 6 ⋅ 3 2 ⋅ 5 2
gp: ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2.
Its isogeny class 187200.u
consists of 2 curves linked by isogenies of
degree 2.
The minimal quadratic twist of this elliptic curve is
65.a1 , its twist by 120 120 1 2 0 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( 65 ) \Q(\sqrt{65}) Q ( 6 5 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
4 4 4
4.0.149760.2
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
8 8 8
8.4.25022177856000000.44
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
8.0.94758543360000.25
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 4 Z ⊕ Z / 4 Z \Z/4\Z \oplus \Z/4\Z Z / 4 Z ⊕ Z / 4 Z
not in database
16 16 1 6
deg 16
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
No Iwasawa invariant data is available for this curve.
p p p -adic regulators
p p p -adic regulators are not yet computed for curves that are not Γ 0 \Gamma_0 Γ 0 -optimal.