Properties

Label 187200.ih
Number of curves $4$
Conductor $187200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ih1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 187200.ih have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 187200.ih do not have complex multiplication.

Modular form 187200.2.a.ih

Copy content sage:E.q_eigenform(10)
 
\(q + q^{13} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 187200.ih

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
187200.ih1 187200ek3 \([0, 0, 0, -6926700, 6999874000]\) \(49235161015876/137109375\) \(102351600000000000000\) \([2]\) \(4718592\) \(2.7121\)  
187200.ih2 187200ek4 \([0, 0, 0, -6458700, -6294134000]\) \(39914580075556/172718325\) \(128933538739200000000\) \([2]\) \(4718592\) \(2.7121\)  
187200.ih3 187200ek2 \([0, 0, 0, -608700, 12166000]\) \(133649126224/77000625\) \(14370164640000000000\) \([2, 2]\) \(2359296\) \(2.3655\)  
187200.ih4 187200ek1 \([0, 0, 0, 151800, 1519000]\) \(33165879296/19278675\) \(-224866465200000000\) \([2]\) \(1179648\) \(2.0190\) \(\Gamma_0(N)\)-optimal