Properties

Label 186576.cc
Number of curves $1$
Conductor $186576$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 186576.cc1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(13\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 186576.cc do not have complex multiplication.

Modular form 186576.2.a.cc

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} + q^{7} + q^{9} - 2 q^{15} - 4 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 186576.cc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
186576.cc1 186576k1 \([0, 1, 0, -69, 1587]\) \(-53248/1587\) \(-1098559488\) \([]\) \(55680\) \(0.41521\) \(\Gamma_0(N)\)-optimal