Properties

Label 185562v1
Conductor 185562185562
Discriminant 1.159×1013-1.159\times 10^{13}
j-invariant 1860867122 -\frac{1860867}{122}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3x211693x+516403y^2+xy+y=x^3-x^2-11693x+516403 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3x2z11693xz2+516403z3y^2z+xyz+yz^2=x^3-x^2z-11693xz^2+516403z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3187083x+32862726y^2=x^3-187083x+32862726 Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([1, -1, 1, -11693, 516403])
 
Copy content gp:E = ellinit([1, -1, 1, -11693, 516403])
 
Copy content magma:E := EllipticCurve([1, -1, 1, -11693, 516403]);
 
Copy content oscar:E = elliptic_curve([1, -1, 1, -11693, 516403])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  185562 185562  = 232132612 \cdot 3^{2} \cdot 13^{2} \cdot 61
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: Δ\Delta  =  11590741948734-11590741948734 = 123913661-1 \cdot 2 \cdot 3^{9} \cdot 13^{6} \cdot 61
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: jj  =  1860867122 -\frac{1860867}{122}  = 12133413611-1 \cdot 2^{-1} \cdot 3^{3} \cdot 41^{3} \cdot 61^{-1}
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.25932179688675900175400874511.2593217968867590017540087451
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.84711209834509163481916890337-0.84711209834509163481916890337
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.79538571075886370.7953857107588637
Szpiro ratio: σm\sigma_{m} ≈ 3.28254923978864443.2825492397886444

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: Ω\Omega ≈ 0.704608038080958397040168435610.70460803808095839704016843561
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 1221 1\cdot2\cdot2\cdot1
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 2.81843215232383358816067374252.8184321523238335881606737425
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

2.818432152L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.7046081.0000004122.818432152\begin{aligned} 2.818432152 \approx L(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.704608 \cdot 1.000000 \cdot 4}{1^2} \\ & \approx 2.818432152\end{aligned}

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([1, -1, 1, -11693, 516403]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([1, -1, 1, -11693, 516403]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 185562.2.a.bc

q+q2+q4q54q7+q8q10+6q114q14+q163q17+6q19+O(q20) q + q^{2} + q^{4} - q^{5} - 4 q^{7} + q^{8} - q^{10} + 6 q^{11} - 4 q^{14} + q^{16} - 3 q^{17} + 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 645120
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I1I_{1} split multiplicative -1 1 1 1
33 22 IIIIII^{*} additive 1 2 9 0
1313 22 I0I_0^{*} additive 1 2 6 0
6161 11 I1I_{1} nonsplit multiplicative 1 1 1 1

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[1, 1, 1463, 0], [1463, 2, 1462, 3], [1, 0, 2, 1], [1, 2, 0, 1], [977, 2, 977, 3], [367, 2, 0, 1], [673, 2, 673, 3], [733, 2, 733, 3]] GL(2,Integers(1464)).subgroup(gens)
 
Copy content magma:Gens := [[1, 1, 1463, 0], [1463, 2, 1462, 3], [1, 0, 2, 1], [1, 2, 0, 1], [977, 2, 977, 3], [367, 2, 0, 1], [673, 2, 673, 3], [733, 2, 733, 3]]; sub<GL(2,Integers(1464))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1464=23361 1464 = 2^{3} \cdot 3 \cdot 61 , index 22, genus 00, and generators

(1114630),(1463214623),(1021),(1201),(97729773),(367201),(67326733),(73327333)\left(\begin{array}{rr} 1 & 1 \\ 1463 & 0 \end{array}\right),\left(\begin{array}{rr} 1463 & 2 \\ 1462 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 977 & 2 \\ 977 & 3 \end{array}\right),\left(\begin{array}{rr} 367 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 673 & 2 \\ 673 & 3 \end{array}\right),\left(\begin{array}{rr} 733 & 2 \\ 733 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1464])K:=\Q(E[1464]) is a degree-501910732800501910732800 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1464Z)\GL_2(\Z/1464\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 30927=313261 30927 = 3 \cdot 13^{2} \cdot 61
33 additive 22 20618=213261 20618 = 2 \cdot 13^{2} \cdot 61
1313 additive 8686 1098=23261 1098 = 2 \cdot 3^{2} \cdot 61
6161 nonsplit multiplicative 6262 3042=232132 3042 = 2 \cdot 3^{2} \cdot 13^{2}

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 185562v consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 1098a1, its twist by 1313.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.1464.1 Z/2Z\Z/2\Z not in database
66 6.0.3137785344.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.