Properties

Label 184800.en
Number of curves $4$
Conductor $184800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("en1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 184800.en have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 184800.en do not have complex multiplication.

Modular form 184800.2.a.en

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{7} + q^{9} + q^{11} + 2 q^{13} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 184800.en

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
184800.en1 184800fg2 \([0, 1, 0, -180433, 29391263]\) \(10150654719808/19370043\) \(1239682752000000\) \([2]\) \(1179648\) \(1.7856\)  
184800.en2 184800fg4 \([0, 1, 0, -149808, -22248612]\) \(46477380430664/286446699\) \(2291573592000000\) \([2]\) \(1179648\) \(1.7856\)  
184800.en3 184800fg1 \([0, 1, 0, -15058, 119888]\) \(377619516352/211789809\) \(211789809000000\) \([2, 2]\) \(589824\) \(1.4391\) \(\Gamma_0(N)\)-optimal
184800.en4 184800fg3 \([0, 1, 0, 59192, 1010888]\) \(2866919053816/1712145897\) \(-13697167176000000\) \([2]\) \(1179648\) \(1.7856\)