Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-30425680x+64606578400\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-30425680xz^2+64606578400z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-2464480107x+47090802213306\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{4}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(7410, 495950)$ | $3.9774089454600190008381894864$ | $\infty$ |
| $(3210, 2450)$ | $0$ | $4$ |
Integral points
\( \left(3185, 0\right) \), \((3210,\pm 2450)\), \((7410,\pm 495950)\)
Invariants
| Conductor: | $N$ | = | \( 18480 \) | = | $2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $570477600000000$ | = | $2^{11} \cdot 3^{3} \cdot 5^{8} \cdot 7^{4} \cdot 11 $ |
|
| j-invariant: | $j$ | = | \( \frac{1520949008089505953959842}{278553515625} \) | = | $2 \cdot 3^{-3} \cdot 5^{-8} \cdot 7^{-4} \cdot 11^{-1} \cdot 23^{3} \cdot 3968567^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6672812274816661002768926468$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.0318963119683828999777632021$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0265025414767253$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.443722767530965$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.9774089454600190008381894864$ |
|
| Real period: | $\Omega$ | ≈ | $0.30005403655361753021903907524$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2\cdot1\cdot2^{3}\cdot2^{2}\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.7737504364389835795794981944 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.773750436 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.300054 \cdot 3.977409 \cdot 64}{4^2} \\ & \approx 4.773750436\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 589824 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{3}^{*}$ | additive | 1 | 4 | 11 | 0 |
| $3$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
| $5$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
| $7$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $11$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.24.0.45 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 736 & 5 \\ 1395 & 2626 \end{array}\right),\left(\begin{array}{rr} 676 & 661 \\ 1479 & 1330 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 2636 & 2637 \end{array}\right),\left(\begin{array}{rr} 2625 & 16 \\ 2624 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1057 & 16 \\ 536 & 129 \end{array}\right),\left(\begin{array}{rr} 1768 & 1 \\ 959 & 10 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 2542 & 2627 \end{array}\right),\left(\begin{array}{rr} 989 & 2624 \\ 330 & 1979 \end{array}\right)$.
The torsion field $K:=\Q(E[2640])$ is a degree-$38928384000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2640\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 33 = 3 \cdot 11 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 6160 = 2^{4} \cdot 5 \cdot 7 \cdot 11 \) |
| $5$ | split multiplicative | $6$ | \( 3696 = 2^{4} \cdot 3 \cdot 7 \cdot 11 \) |
| $7$ | split multiplicative | $8$ | \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \) |
| $11$ | nonsplit multiplicative | $12$ | \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 18480.bl
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 9240.bf1, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{6}) \) | \(\Z/8\Z\) | not in database |
| $2$ | \(\Q(\sqrt{11}) \) | \(\Z/8\Z\) | not in database |
| $2$ | \(\Q(\sqrt{66}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{6}, \sqrt{11})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.21667237072994304.61 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.21667237072994304.26 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/16\Z\) | not in database |
| $8$ | deg 8 | \(\Z/16\Z\) | not in database |
| $8$ | deg 8 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | nonsplit | split | split | nonsplit | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 7 | 2 | 2 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.