Show commands: SageMath
Rank
The elliptic curves in class 18450.e have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 18450.e do not have complex multiplication.Modular form 18450.2.a.e
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 18450.e
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 18450.e1 | 18450p1 | \([1, -1, 0, -102126717, 397269359941]\) | \(10341755683137709164937/356992303104\) | \(4066365452544000000\) | \([2]\) | \(1720320\) | \(3.0684\) | \(\Gamma_0(N)\)-optimal |
| 18450.e2 | 18450p2 | \([1, -1, 0, -101982717, 398445407941]\) | \(-10298071306410575356297/60769798505543808\) | \(-692205986102209938000000\) | \([2]\) | \(3440640\) | \(3.4150\) |