Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2+414x+13915\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z+414xz^2+13915z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+33507x+10244583\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 1840 \) | = | $2^{4} \cdot 5 \cdot 23$ |
|
Discriminant: | $\Delta$ | = | $-89843750000$ | = | $-1 \cdot 2^{4} \cdot 5^{12} \cdot 23 $ |
|
j-invariant: | $j$ | = | \( \frac{489277573376}{5615234375} \) | = | $2^{8} \cdot 5^{-12} \cdot 17^{3} \cdot 23^{-1} \cdot 73^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.78272550010162168333834801027$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.55167643991497324686593730312$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.147813072895248$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.339770782686103$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.79165164544437908290677686261$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.5833032908887581658135537252 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.583303291 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.791652 \cdot 1.000000 \cdot 2}{1^2} \\ & \approx 1.583303291\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 1728 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II$ | additive | -1 | 4 | 4 | 0 |
$5$ | $2$ | $I_{12}$ | nonsplit multiplicative | 1 | 1 | 12 | 12 |
$23$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 276 = 2^{2} \cdot 3 \cdot 23 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 97 & 6 \\ 15 & 19 \end{array}\right),\left(\begin{array}{rr} 137 & 0 \\ 0 & 275 \end{array}\right),\left(\begin{array}{rr} 143 & 270 \\ 144 & 269 \end{array}\right),\left(\begin{array}{rr} 250 & 159 \\ 197 & 269 \end{array}\right),\left(\begin{array}{rr} 271 & 6 \\ 270 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[276])$ is a degree-$76944384$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/276\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 23 \) |
$3$ | good | $2$ | \( 368 = 2^{4} \cdot 23 \) |
$5$ | nonsplit multiplicative | $6$ | \( 368 = 2^{4} \cdot 23 \) |
$23$ | nonsplit multiplicative | $24$ | \( 80 = 2^{4} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 1840f
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 460c2, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{3}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.23.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.12167.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.644753664.2 | \(\Z/3\Z\) | not in database |
$6$ | 6.2.914112.1 | \(\Z/6\Z\) | not in database |
$12$ | 12.2.892554561978368.12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | 12.0.442032795979776.3 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.6.2446000342653532469151117312000000000000.1 | \(\Z/9\Z\) | not in database |
$18$ | 18.0.141787233401616442612437221376.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | nonsplit | ord | ord | ord | ss | ord | nonsplit | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
$\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.