Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-276x\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-276xz^2\)
|
(dehomogenize, simplify) |
\(y^2=x^3-358371x+5372190\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(23, 69)$ | $0.86862480693844701251328860969$ | $\infty$ |
$(0, 0)$ | $0$ | $2$ |
$(16, -8)$ | $0$ | $2$ |
Integral points
\( \left(-12, 48\right) \), \( \left(-12, -36\right) \), \( \left(-3, 30\right) \), \( \left(-3, -27\right) \), \( \left(0, 0\right) \), \( \left(16, -8\right) \), \( \left(23, 69\right) \), \( \left(23, -92\right) \), \( \left(25, 85\right) \), \( \left(25, -110\right) \), \( \left(92, 828\right) \), \( \left(92, -920\right) \)
Invariants
Conductor: | $N$ | = | \( 18354 \) | = | $2 \cdot 3 \cdot 7 \cdot 19 \cdot 23$ |
|
Discriminant: | $\Delta$ | = | $1347477264$ | = | $2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 19^{2} \cdot 23^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{2338337977417}{1347477264} \) | = | $2^{-4} \cdot 3^{-2} \cdot 7^{-2} \cdot 13^{3} \cdot 19^{-2} \cdot 23^{-2} \cdot 1021^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.44135459445272343778688963462$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.44135459445272343778688963462$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9241246685961948$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.900958825515614$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.86862480693844701251328860969$ |
|
Real period: | $\Omega$ | ≈ | $1.2974295736715884148775010892$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2\cdot2\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.2539590258934302038866174734 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.253959026 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.297430 \cdot 0.868625 \cdot 32}{4^2} \\ & \approx 2.253959026\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 9216 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$19$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$23$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 4.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 36708 = 2^{2} \cdot 3 \cdot 7 \cdot 19 \cdot 23 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 24473 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4789 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 36705 & 4 \\ 36704 & 5 \end{array}\right),\left(\begin{array}{rr} 18357 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 31467 & 2 \\ 15730 & 36707 \end{array}\right),\left(\begin{array}{rr} 17391 & 2 \\ 25114 & 36707 \end{array}\right)$.
The torsion field $K:=\Q(E[36708])$ is a degree-$6366119799029760$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/36708\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 1 \) |
$3$ | nonsplit multiplicative | $4$ | \( 6118 = 2 \cdot 7 \cdot 19 \cdot 23 \) |
$7$ | split multiplicative | $8$ | \( 2622 = 2 \cdot 3 \cdot 19 \cdot 23 \) |
$19$ | split multiplicative | $20$ | \( 966 = 2 \cdot 3 \cdot 7 \cdot 23 \) |
$23$ | nonsplit multiplicative | $24$ | \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 18354e
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{133}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(i, \sqrt{69})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-69}, \sqrt{-133})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | nonsplit | ord | split | ord | ord | ord | split | nonsplit | ord | ss | ord | ord | ord | ss |
$\lambda$-invariant(s) | 4 | 3 | 3 | 2 | 3 | 1 | 1 | 2 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.