Properties

Label 183150eq
Number of curves $2$
Conductor $183150$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("eq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 183150eq have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 + T\)
\(37\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 183150eq do not have complex multiplication.

Modular form 183150.2.a.eq

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 2 q^{7} - q^{8} + q^{11} + 2 q^{13} - 2 q^{14} + q^{16} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 183150eq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
183150.cm2 183150eq1 \([1, -1, 0, -12492, 830416]\) \(-18927429625/15003648\) \(-170900928000000\) \([2]\) \(663552\) \(1.4295\) \(\Gamma_0(N)\)-optimal
183150.cm1 183150eq2 \([1, -1, 0, -228492, 42086416]\) \(115821777093625/31804608\) \(362274363000000\) \([2]\) \(1327104\) \(1.7761\)