Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-5628481x-4426230719\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-5628481xz^2-4426230719z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-455906988x-3228089915088\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-929, 0)$ | $0$ | $2$ |
Integral points
\( \left(-929, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 18240 \) | = | $2^{6} \cdot 3 \cdot 5 \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $2941074800640000000000$ | = | $2^{28} \cdot 3^{10} \cdot 5^{10} \cdot 19 $ |
|
j-invariant: | $j$ | = | \( \frac{75224183150104868881}{11219310000000000} \) | = | $2^{-10} \cdot 3^{-10} \cdot 5^{-10} \cdot 19^{-1} \cdot 4221361^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.8438309356349057586357222112$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.8041101647949877945098740290$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.032281228728047$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.936341229614538$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.098996054288308489697443866887$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot2\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $0.19799210857661697939488773377 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.197992109 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.098996 \cdot 1.000000 \cdot 8}{2^2} \\ & \approx 0.197992109\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 921600 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{18}^{*}$ | additive | 1 | 6 | 28 | 10 |
$3$ | $2$ | $I_{10}$ | nonsplit multiplicative | 1 | 1 | 10 | 10 |
$5$ | $2$ | $I_{10}$ | nonsplit multiplicative | 1 | 1 | 10 | 10 |
$19$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$5$ | 5B.4.1 | 5.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \), index $288$, genus $5$, and generators
$\left(\begin{array}{rr} 761 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6 & 5 \\ 625 & 46 \end{array}\right),\left(\begin{array}{rr} 1139 & 0 \\ 0 & 2279 \end{array}\right),\left(\begin{array}{rr} 2261 & 20 \\ 2260 & 21 \end{array}\right),\left(\begin{array}{rr} 2269 & 2264 \\ 1380 & 1489 \end{array}\right),\left(\begin{array}{rr} 11 & 16 \\ 2040 & 1931 \end{array}\right),\left(\begin{array}{rr} 126 & 13 \\ 875 & 956 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 10 & 101 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 20 & 1 \end{array}\right),\left(\begin{array}{rr} 231 & 14 \\ 1120 & 1047 \end{array}\right),\left(\begin{array}{rr} 1159 & 2260 \\ 1160 & 2259 \end{array}\right),\left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[2280])$ is a degree-$15128985600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2280\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 19 \) |
$3$ | nonsplit multiplicative | $4$ | \( 6080 = 2^{6} \cdot 5 \cdot 19 \) |
$5$ | nonsplit multiplicative | $6$ | \( 1216 = 2^{6} \cdot 19 \) |
$19$ | split multiplicative | $20$ | \( 960 = 2^{6} \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 5 and 10.
Its isogeny class 18240h
consists of 4 curves linked by isogenies of
degrees dividing 10.
Twists
The minimal quadratic twist of this elliptic curve is 570l2, its twist by $8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{19}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{2}) \) | \(\Z/10\Z\) | not in database |
$4$ | 4.0.273600.1 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{19})\) | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.432373800960000.69 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$8$ | 8.0.299427840000.22 | \(\Z/20\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/20\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/20\Z\) | not in database |
$16$ | deg 16 | \(\Z/30\Z\) | not in database |
$20$ | 20.0.9451648239783810422571008000000000000000.1 | \(\Z/10\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 19 |
---|---|---|---|---|
Reduction type | add | nonsplit | nonsplit | split |
$\lambda$-invariant(s) | - | 0 | 0 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.