Properties

Label 18240.bv
Number of curves $4$
Conductor $18240$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bv1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 18240.bv have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 18240.bv do not have complex multiplication.

Modular form 18240.2.a.bv

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + q^{9} + 2 q^{13} - q^{15} - 6 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 18240.bv

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
18240.bv1 18240y4 \([0, 1, 0, -121601, 16280799]\) \(3034301922374404/1425\) \(93388800\) \([2]\) \(32768\) \(1.3030\)  
18240.bv2 18240y3 \([0, 1, 0, -9121, 142655]\) \(1280615525284/601171875\) \(39398400000000\) \([2]\) \(32768\) \(1.3030\)  
18240.bv3 18240y2 \([0, 1, 0, -7601, 252399]\) \(2964647793616/2030625\) \(33269760000\) \([2, 2]\) \(16384\) \(0.95645\)  
18240.bv4 18240y1 \([0, 1, 0, -381, 5475]\) \(-5988775936/9774075\) \(-10008652800\) \([2]\) \(8192\) \(0.60988\) \(\Gamma_0(N)\)-optimal