Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-1655745x-828126657\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-1655745xz^2-828126657z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-134115372x-603301986864\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(3026, 147915)$ | $5.6898118301324587254345524427$ | $\infty$ |
| $(1487, 0)$ | $0$ | $2$ |
Integral points
\( \left(1487, 0\right) \), \((3026,\pm 147915)\)
Invariants
| Conductor: | $N$ | = | \( 18240 \) | = | $2^{6} \cdot 3 \cdot 5 \cdot 19$ |
|
| Discriminant: | $\Delta$ | = | $-5358469917966336000$ | = | $-1 \cdot 2^{42} \cdot 3^{3} \cdot 5^{3} \cdot 19^{2} $ |
|
| j-invariant: | $j$ | = | \( -\frac{1914980734749238129}{20440940544000} \) | = | $-1 \cdot 2^{-24} \cdot 3^{-3} \cdot 5^{-3} \cdot 19^{-2} \cdot 29^{3} \cdot 42821^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4102004573115109495590235681$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.3704796864715929854331753859$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0164002037838358$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.564070350015582$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.6898118301324587254345524427$ |
|
| Real period: | $\Omega$ | ≈ | $0.066503559231366760149836828758$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 72 $ = $ 2^{2}\cdot3\cdot3\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $6.8110692850898149619153207881 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.811069285 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.066504 \cdot 5.689812 \cdot 72}{2^2} \\ & \approx 6.811069285\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 552960 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{32}^{*}$ | additive | -1 | 6 | 42 | 24 |
| $3$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $19$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 2270 & 2277 \\ 2079 & 1148 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2269 & 2278 \\ 1190 & 1149 \end{array}\right),\left(\begin{array}{rr} 99 & 478 \\ 686 & 1061 \end{array}\right),\left(\begin{array}{rr} 1139 & 0 \\ 0 & 2279 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 2230 & 2271 \end{array}\right),\left(\begin{array}{rr} 2269 & 12 \\ 2268 & 13 \end{array}\right),\left(\begin{array}{rr} 1894 & 2269 \\ 1911 & 1160 \end{array}\right),\left(\begin{array}{rr} 1151 & 2268 \\ 1152 & 2267 \end{array}\right),\left(\begin{array}{rr} 1499 & 2268 \\ 2154 & 2207 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[2280])$ is a degree-$45386956800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2280\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 15 = 3 \cdot 5 \) |
| $3$ | split multiplicative | $4$ | \( 1216 = 2^{6} \cdot 19 \) |
| $5$ | split multiplicative | $6$ | \( 3648 = 2^{6} \cdot 3 \cdot 19 \) |
| $19$ | split multiplicative | $20$ | \( 960 = 2^{6} \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 18240.co
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 570.k3, its twist by $-8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-15}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-2}) \) | \(\Z/6\Z\) | not in database |
| $4$ | 4.2.1386240.4 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-2}, \sqrt{-15})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.2.1801557504.6 | \(\Z/6\Z\) | not in database |
| $8$ | 8.0.432373800960000.14 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.16842816000000.82 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.1921661337600.10 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.0.30036982818384384789139688446230528.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | split | ord | ord | ord | ord | split | ss | ss | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | - | 6 | 2 | 1 | 1 | 1 | 1 | 2 | 1,1 | 1,1 | 1 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.