Properties

Label 182070.t
Number of curves $4$
Conductor $182070$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 182070.t have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 182070.t do not have complex multiplication.

Modular form 182070.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} + q^{7} - q^{8} + q^{10} - 4 q^{11} + 2 q^{13} - q^{14} + q^{16} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 182070.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
182070.t1 182070cx4 \([1, -1, 0, -3592105035, -82864201107259]\) \(291306206119284545407569/101150000000\) \(1779864511071150000000\) \([2]\) \(99090432\) \(3.8711\)  
182070.t2 182070cx3 \([1, -1, 0, -266154315, -781009788475]\) \(118495863754334673489/53596139570691200\) \(943093096908446939698051200\) \([2]\) \(99090432\) \(3.8711\)  
182070.t3 182070cx2 \([1, -1, 0, -224538315, -1294326502075]\) \(71149857462630609489/41907496960000\) \(737416377527692584960000\) \([2, 2]\) \(49545216\) \(3.5245\)  
182070.t4 182070cx1 \([1, -1, 0, -11464395, -27857736379]\) \(-9470133471933009/13576123187200\) \(-238889370823800599347200\) \([2]\) \(24772608\) \(3.1780\) \(\Gamma_0(N)\)-optimal