Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-59134x+5547693\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-59134xz^2+5547693z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-946139x+354106230\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(571/4, -575/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 182 \) | = | $2 \cdot 7 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $8953460393696$ | = | $2^{5} \cdot 7^{3} \cdot 13^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{22868021811807457713}{8953460393696} \) | = | $2^{-5} \cdot 3^{3} \cdot 7^{-3} \cdot 13^{-8} \cdot 349^{3} \cdot 2711^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.4500067671328869739624419133$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.4500067671328869739624419133$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.087583326356874$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $8.56575978117105$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.71886790937438122804420836057$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 10 $ = $ 5\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.7971697734359530701105209014 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.797169773 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.718868 \cdot 1.000000 \cdot 10}{2^2} \\ & \approx 1.797169773\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 720 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
$7$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$13$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.24.0.103 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 56.48.0-56.bp.1.3, level \( 56 = 2^{3} \cdot 7 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 24 & 1 \\ 49 & 40 \end{array}\right),\left(\begin{array}{rr} 12 & 1 \\ 55 & 6 \end{array}\right),\left(\begin{array}{rr} 49 & 8 \\ 48 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 8 & 43 \\ 25 & 54 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 50 & 51 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[56])$ is a degree-$64512$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/56\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 7 \) |
$3$ | good | $2$ | \( 26 = 2 \cdot 13 \) |
$5$ | good | $2$ | \( 91 = 7 \cdot 13 \) |
$7$ | nonsplit multiplicative | $8$ | \( 26 = 2 \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 14 = 2 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 182.c
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{14}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{2}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{7}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | 4.4.14336.1 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.493455671296.14 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.481890304.4 | \(\Z/8\Z\) | not in database |
$8$ | 8.8.40282095616.2 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.2.999406512.1 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | 16.0.59447875862838378496.3 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 13 |
---|---|---|---|---|---|
Reduction type | split | ss | ord | nonsplit | nonsplit |
$\lambda$-invariant(s) | 1 | 0,0 | 2 | 0 | 0 |
$\mu$-invariant(s) | 0 | 0,0 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.