Show commands: SageMath
Rank
The elliptic curves in class 18176.p have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 18176.p do not have complex multiplication.Modular form 18176.2.a.p
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrr} 1 & 5 & 25 \\ 5 & 1 & 5 \\ 25 & 5 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 18176.p
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 18176.p1 | 18176q3 | \([0, 1, 0, -10513917, 13118341787]\) | \(3922540634246430781376/71\) | \(2326528\) | \([]\) | \(147200\) | \(2.1825\) | |
| 18176.p2 | 18176q2 | \([0, 1, 0, -17277, 786203]\) | \(17406197775296/1804229351\) | \(59120987373568\) | \([]\) | \(29440\) | \(1.3778\) | |
| 18176.p3 | 18176q1 | \([0, 1, 0, -3837, -92773]\) | \(190705121216/71\) | \(2326528\) | \([]\) | \(5888\) | \(0.57308\) | \(\Gamma_0(N)\)-optimal |