Properties

Label 18150h
Number of curves $2$
Conductor $18150$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("h1")
 
E.isogeny_class()
 

Elliptic curves in class 18150h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
18150.h2 18150h1 \([1, 1, 0, 981550, -643663500]\) \(6045109175/13856832\) \(-239728741745625000000\) \([]\) \(777600\) \(2.5946\) \(\Gamma_0(N)\)-optimal
18150.h1 18150h2 \([1, 1, 0, -9227825, 22215127125]\) \(-5023028944825/9420668928\) \(-162981344401920000000000\) \([]\) \(2332800\) \(3.1439\)  

Rank

sage: E.rank()
 

The elliptic curves in class 18150h have rank \(0\).

Complex multiplication

The elliptic curves in class 18150h do not have complex multiplication.

Modular form 18150.2.a.h

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} - q^{7} - q^{8} + q^{9} - q^{12} - 4 q^{13} + q^{14} + q^{16} + 3 q^{17} - q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.