Properties

Label 180918e
Number of curves $1$
Conductor $180918$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 180918e1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(19\)\(1 - T\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(29\) \( 1 - 7 T + 29 T^{2}\) 1.29.ah
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 180918e do not have complex multiplication.

Modular form 180918.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 2 q^{5} - 2 q^{7} + q^{8} - 2 q^{10} - q^{11} + q^{13} - 2 q^{14} + q^{16} - 5 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 180918e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
180918.bc1 180918e1 \([1, -1, 1, -4826, 65305]\) \(32226867657/14047232\) \(5417188595712\) \([]\) \(304128\) \(1.1394\) \(\Gamma_0(N)\)-optimal