Properties

Label 180918.ba
Number of curves $2$
Conductor $180918$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ba1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 180918.ba have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(19\)\(1 + T\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 180918.ba do not have complex multiplication.

Modular form 180918.2.a.ba

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 3 q^{5} + 4 q^{7} + q^{8} - 3 q^{10} - 6 q^{11} - 4 q^{13} + 4 q^{14} + q^{16} - 3 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 180918.ba

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
180918.ba1 180918c2 \([1, -1, 1, -243094379, -1458786852421]\) \(52606883288473/77824\) \(2350279093535753416704\) \([]\) \(54846720\) \(3.3700\)  
180918.ba2 180918c1 \([1, -1, 1, -3830324, -807406873]\) \(205789993/109744\) \(3314260752993777279024\) \([]\) \(18282240\) \(2.8207\) \(\Gamma_0(N)\)-optimal