Properties

Label 180336t
Number of curves $2$
Conductor $180336$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 180336t have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(13\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 180336t do not have complex multiplication.

Modular form 180336.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} - 4 q^{7} + q^{9} - 2 q^{11} - q^{13} + 2 q^{15} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 180336t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
180336.cv1 180336t1 \([0, 1, 0, -8179952, 3223214292]\) \(612241204436497/308834353152\) \(30533675043949639630848\) \([2]\) \(12386304\) \(3.0070\) \(\Gamma_0(N)\)-optimal
180336.cv2 180336t2 \([0, 1, 0, 30291728, 24905853140]\) \(31091549545392623/20700995942016\) \(-2046655356596761391529984\) \([2]\) \(24772608\) \(3.3536\)