Properties

Label 180336.bs
Number of curves $2$
Conductor $180336$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bs1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 180336.bs have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(13\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 180336.bs do not have complex multiplication.

Modular form 180336.2.a.bs

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 4 q^{5} + 2 q^{7} + q^{9} + 6 q^{11} - q^{13} - 4 q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 180336.bs

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
180336.bs1 180336by2 \([0, -1, 0, -1514456, 240606768]\) \(3885442650361/1996623837\) \(197401172511261708288\) \([2]\) \(10616832\) \(2.5865\)  
180336.bs2 180336by1 \([0, -1, 0, -1213896, 514717488]\) \(2000852317801/2094417\) \(207069736354910208\) \([2]\) \(5308416\) \(2.2399\) \(\Gamma_0(N)\)-optimal