Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| 
    \(y^2=x^3-1715x+21266\)
    
    
    
         | 
        (homogenize, simplify) | 
| 
    \(y^2z=x^3-1715xz^2+21266z^3\)
    
    
    
         | 
        (dehomogenize, simplify) | 
| 
    \(y^2=x^3-1715x+21266\)
    
    
    
         | 
        (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(37, 92)$ | $0.98753948783553497333120180258$ | $\infty$ | 
| $(7, 98)$ | $1.0122922370446203502814984418$ | $\infty$ | 
| $(14, 0)$ | $0$ | $2$ | 
Integral points
      
    \((-35,\pm 196)\), \((7,\pm 98)\), \( \left(14, 0\right) \), \((37,\pm 92)\), \((50,\pm 246)\), \((77,\pm 588)\), \((95,\pm 846)\), \((175,\pm 2254)\), \((589,\pm 14260)\)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 18032 \) | = | $2^{4} \cdot 7^{2} \cdot 23$ | 
     | 
        
| Discriminant: | $\Delta$ | = | $127459985408$ | = | $2^{11} \cdot 7^{6} \cdot 23^{2} $ | 
     | 
        
| j-invariant: | $j$ | = | \( \frac{2315250}{529} \) | = | $2 \cdot 3^{3} \cdot 5^{3} \cdot 7^{3} \cdot 23^{-2}$ | 
     | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | 
     | 
        ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.84340773832824860628295142572$ | 
     | 
        ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.76493225171269124656885439067$ | 
     | 
        ||
| $abc$ quality: | $Q$ | ≈ | $0.8950584960350794$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.464841161474012$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ | 
     | 
        
| Mordell-Weil rank: | $r$ | = | $ 2$ | 
     | 
        
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.87343503372691383372071016221$ | 
     | 
| Real period: | $\Omega$ | ≈ | $0.98193264844959712502979993597$ | 
     | 
        
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2^{2}\cdot2 $ | 
     | 
        
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ | 
     | 
        
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $6.8612350073290535174170833989 $ | 
     | 
        
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | 
     | 
        
BSD formula
$$\begin{aligned} 6.861235007 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.981933 \cdot 0.873435 \cdot 32}{2^2} \\ & \approx 6.861235007\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 13824 | 
     | 
        
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 | 
     | 
        
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{3}^{*}$ | additive | 1 | 4 | 11 | 0 | 
| $7$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 | 
| $23$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 8.6.0.6 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 184 = 2^{3} \cdot 23 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 2 & 1 \\ 91 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 25 & 162 \\ 160 & 23 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 181 & 4 \\ 180 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 97 & 4 \\ 10 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[184])$ is a degree-$34197504$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/184\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $4$ | \( 49 = 7^{2} \) | 
| $7$ | additive | $26$ | \( 368 = 2^{4} \cdot 23 \) | 
| $23$ | nonsplit multiplicative | $24$ | \( 784 = 2^{4} \cdot 7^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 18032.n
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 184.c1, its twist by $28$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $4$ | 4.0.207368.1 | \(\Z/4\Z\) | not in database | 
| $8$ | 8.4.21309228580864.17 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.2752095195136.4 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ss | ss | add | ord | ord | ord | ord | nonsplit | ord | ss | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | - | 2,2 | 2,2 | - | 2 | 2 | 2 | 2 | 2 | 2 | 2,2 | 2 | 2 | 2 | 2 | 
| $\mu$-invariant(s) | - | 0,0 | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.