Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-975x-8750\)
|
(homogenize, simplify) |
\(y^2z=x^3-975xz^2-8750z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-975x-8750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-19, 54)$ | $0.83296517386586589499241664366$ | $\infty$ |
$(-10, 0)$ | $0$ | $2$ |
$(35, 0)$ | $0$ | $2$ |
Integral points
\( \left(-25, 0\right) \), \((-19,\pm 54)\), \((-15,\pm 50)\), \( \left(-10, 0\right) \), \( \left(35, 0\right) \), \((39,\pm 112)\), \((65,\pm 450)\), \((125,\pm 1350)\), \((710,\pm 18900)\)
Invariants
Conductor: | $N$ | = | \( 1800 \) | = | $2^{3} \cdot 3^{2} \cdot 5^{2}$ |
|
Discriminant: | $\Delta$ | = | $26244000000$ | = | $2^{8} \cdot 3^{8} \cdot 5^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{35152}{9} \) | = | $2^{4} \cdot 3^{-2} \cdot 13^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.70867281447124776033899160825$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.1074504064531541456038320911$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.972547111469975$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.304013730726897$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.83296517386586589499241664366$ |
|
Real period: | $\Omega$ | ≈ | $0.87051774000699046838009919079$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{2}\cdot2^{2}\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.9004438426329738350460360566 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.900443843 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.870518 \cdot 0.832965 \cdot 64}{4^2} \\ & \approx 2.900443843\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 1024 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{1}^{*}$ | additive | -1 | 3 | 8 | 0 |
$3$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
$5$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.48.0.138 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120 = 2^{3} \cdot 3 \cdot 5 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 49 & 70 \\ 90 & 29 \end{array}\right),\left(\begin{array}{rr} 113 & 8 \\ 112 & 9 \end{array}\right),\left(\begin{array}{rr} 41 & 0 \\ 40 & 101 \end{array}\right),\left(\begin{array}{rr} 101 & 80 \\ 70 & 51 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 116 & 117 \end{array}\right),\left(\begin{array}{rr} 23 & 0 \\ 0 & 119 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[120])$ is a degree-$184320$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 225 = 3^{2} \cdot 5^{2} \) |
$3$ | additive | $8$ | \( 200 = 2^{3} \cdot 5^{2} \) |
$5$ | additive | $14$ | \( 72 = 2^{3} \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 1800s
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 24a1, its twist by $-15$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-15}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{5})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{-5})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.12960000.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.3317760000.4 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.3317760000.6 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.4.1866240000.3 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.2.113374080000.3 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | 16.0.3482851737600000000.2 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | 16.0.11007531417600000000.1 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | add | ss | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | - | - | - | 1,1 | 1 | 3 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | - | - | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.