Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-1598x-15356\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-1598xz^2-15356z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-2071035x-710236458\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(44, -22)$ | $0$ | $2$ |
Integral points
\( \left(44, -22\right) \)
Invariants
| Conductor: | $N$ | = | \( 17986 \) | = | $2 \cdot 17 \cdot 23^{2}$ |
|
| Discriminant: | $\Delta$ | = | $161063047232$ | = | $2^{6} \cdot 17 \cdot 23^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{3048625}{1088} \) | = | $2^{-6} \cdot 5^{3} \cdot 17^{-1} \cdot 29^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.85135477141611285875138823797$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.71639233654846198665198817793$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9000957170016773$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.4441119401527343$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.77741473961735735548164940077$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ ( 2 \cdot 3 )\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $2.3322442188520720664449482023 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 2.332244219 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.777415 \cdot 1.000000 \cdot 12}{2^2} \\ & \approx 2.332244219\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 25344 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
| $17$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $23$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.6.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9384 = 2^{3} \cdot 3 \cdot 17 \cdot 23 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 9373 & 12 \\ 9372 & 13 \end{array}\right),\left(\begin{array}{rr} 6809 & 3266 \\ 8694 & 829 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 4923 & 2944 \\ 2438 & 2117 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 9334 & 9375 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 6527 & 0 \\ 0 & 9383 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4693 & 828 \\ 414 & 4969 \end{array}\right),\left(\begin{array}{rr} 2002 & 4899 \\ 6141 & 4072 \end{array}\right)$.
The torsion field $K:=\Q(E[9384])$ is a degree-$16073374040064$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9384\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 8993 = 17 \cdot 23^{2} \) |
| $3$ | good | $2$ | \( 8993 = 17 \cdot 23^{2} \) |
| $17$ | split multiplicative | $18$ | \( 1058 = 2 \cdot 23^{2} \) |
| $23$ | additive | $266$ | \( 34 = 2 \cdot 17 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 17986.e
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 34.a4, its twist by $-23$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{17}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-23}) \) | \(\Z/6\Z\) | not in database |
| $4$ | 4.4.575552.1 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{17}, \sqrt{-23})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.2.27437400189.2 | \(\Z/6\Z\) | not in database |
| $8$ | 8.0.6916793801245696.5 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.8.95734170259456.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.331260104704.5 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.0.19938130218561213359354174642122752.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 17 | 23 |
|---|---|---|---|---|
| Reduction type | split | ord | split | add |
| $\lambda$-invariant(s) | 4 | 6 | 1 | - |
| $\mu$-invariant(s) | 0 | 0 | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.