Properties

Label 178752.bi
Number of curves $4$
Conductor $178752$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bi1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 178752.bi have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 178752.bi do not have complex multiplication.

Modular form 178752.2.a.bi

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} + q^{9} + 4 q^{11} + 2 q^{13} + 2 q^{15} - 2 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 178752.bi

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
178752.bi1 178752iq4 \([0, -1, 0, -357569, -82178655]\) \(1311494070536/171\) \(659225935872\) \([2]\) \(884736\) \(1.6831\)  
178752.bi2 178752iq2 \([0, -1, 0, -22409, -1271031]\) \(2582630848/29241\) \(14090954379264\) \([2, 2]\) \(442368\) \(1.3365\)  
178752.bi3 178752iq3 \([0, -1, 0, -4769, -3236127]\) \(-3112136/1172889\) \(-4521630694146048\) \([2]\) \(884736\) \(1.6831\)  
178752.bi4 178752iq1 \([0, -1, 0, -2564, 18894]\) \(247673152/124659\) \(938624428224\) \([2]\) \(221184\) \(0.98997\) \(\Gamma_0(N)\)-optimal