Properties

Label 17856q
Number of curves $4$
Conductor $17856$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 17856q have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(31\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 17856q do not have complex multiplication.

Modular form 17856.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} - 2 q^{13} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 17856q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
17856.r4 17856q1 \([0, 0, 0, -396, -15120]\) \(-35937/496\) \(-94787076096\) \([2]\) \(12288\) \(0.78780\) \(\Gamma_0(N)\)-optimal
17856.r3 17856q2 \([0, 0, 0, -11916, -498960]\) \(979146657/3844\) \(734599839744\) \([2, 2]\) \(24576\) \(1.1344\)  
17856.r1 17856q3 \([0, 0, 0, -190476, -31996944]\) \(3999236143617/62\) \(11848384512\) \([2]\) \(49152\) \(1.4809\)  
17856.r2 17856q4 \([0, 0, 0, -17676, 33264]\) \(3196010817/1847042\) \(352975222996992\) \([2]\) \(49152\) \(1.4809\)