Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2=x^3-803532x+277375088\) | (homogenize, simplify) | 
| \(y^2z=x^3-803532xz^2+277375088z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-803532x+277375088\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(494, 992)$ | $0.32430507168403762942054023912$ | $\infty$ | 
Integral points
      
    \((308,\pm 7688)\), \((494,\pm 992)\)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 17856 \) | = | $2^{6} \cdot 3^{2} \cdot 31$ |  | 
| Discriminant: | $\Delta$ | = | $-32826695738720256$ | = | $-1 \cdot 2^{19} \cdot 3^{7} \cdot 31^{5} $ |  | 
| j-invariant: | $j$ | = | \( -\frac{300238092661681}{171774906} \) | = | $-1 \cdot 2^{-1} \cdot 3^{-1} \cdot 29^{3} \cdot 31^{-5} \cdot 2309^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.1153672252670888538626717915$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.52634031009311604403920099085$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $1.0100188200478981$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.3528498724708795$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 1$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.32430507168403762942054023912$ |  | 
| Real period: | $\Omega$ | ≈ | $0.36478880982933032151546572177$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 40 $ = $ 2^{2}\cdot2\cdot5 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |  | 
| Special value: | $ L'(E,1)$ | ≈ | $4.7321144448494296206528527839 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |  | 
BSD formula
$$\begin{aligned} 4.732114445 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.364789 \cdot 0.324305 \cdot 40}{1^2} \\ & \approx 4.732114445\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 153600 |  | 
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{9}^{*}$ | additive | 1 | 6 | 19 | 1 | 
| $3$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 | 
| $31$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $5$ | 5B.4.2 | 5.12.0.2 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3720 = 2^{3} \cdot 3 \cdot 5 \cdot 31 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 1801 & 10 \\ 1565 & 51 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 3665 & 3601 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 2479 & 3710 \\ 1235 & 3669 \end{array}\right),\left(\begin{array}{rr} 2791 & 10 \\ 2795 & 51 \end{array}\right),\left(\begin{array}{rr} 1859 & 3710 \\ 1855 & 3669 \end{array}\right),\left(\begin{array}{rr} 3711 & 10 \\ 3710 & 11 \end{array}\right),\left(\begin{array}{rr} 937 & 1870 \\ 3680 & 2361 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[3720])$ is a degree-$658243584000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3720\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $4$ | \( 279 = 3^{2} \cdot 31 \) | 
| $3$ | additive | $8$ | \( 1984 = 2^{6} \cdot 31 \) | 
| $5$ | good | $2$ | \( 576 = 2^{6} \cdot 3^{2} \) | 
| $31$ | split multiplicative | $32$ | \( 576 = 2^{6} \cdot 3^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 17856.bs
consists of 2 curves linked by isogenies of
degree 5.
Twists
The minimal quadratic twist of this elliptic curve is 186.c1, its twist by $-24$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $3$ | 3.1.744.1 | \(\Z/2\Z\) | not in database | 
| $4$ | 4.4.72000.1 | \(\Z/5\Z\) | not in database | 
| $6$ | 6.0.411830784.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/3\Z\) | not in database | 
| $10$ | 10.0.100776960000000000.2 | \(\Z/5\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/4\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/10\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | ord | ord | ord | ord | ord | ord | ord | ss | split | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | - | - | 3 | 1 | 1 | 1 | 1 | 3 | 1 | 1,1 | 2 | 1 | 1 | 1 | 1 | 
| $\mu$-invariant(s) | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
