Properties

Label 17850.bp
Number of curves $4$
Conductor $17850$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 17850.bp have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 17850.bp do not have complex multiplication.

Modular form 17850.2.a.bp

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{6} - q^{7} + q^{8} + q^{9} - 4 q^{11} + q^{12} + 2 q^{13} - q^{14} + q^{16} - q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 17850.bp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
17850.bp1 17850bs3 \([1, 0, 0, -141005438, 644457063492]\) \(19843180007106582309156121/1586964960000\) \(24796327500000000\) \([2]\) \(1474560\) \(3.0367\)  
17850.bp2 17850bs2 \([1, 0, 0, -8813438, 10067655492]\) \(4845512858070228485401/1370018429337600\) \(21406537958400000000\) \([2, 2]\) \(737280\) \(2.6902\)  
17850.bp3 17850bs4 \([1, 0, 0, -7693438, 12720935492]\) \(-3223035316613162194201/2609328690805052160\) \(-40770760793828940000000\) \([2]\) \(1474560\) \(3.0367\)  
17850.bp4 17850bs1 \([1, 0, 0, -621438, 114375492]\) \(1698623579042432281/620987846492160\) \(9702935101440000000\) \([2]\) \(368640\) \(2.3436\) \(\Gamma_0(N)\)-optimal