Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-5076x-359702\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-5076xz^2-359702z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-6577875x-16762511250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 17850 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $-47395096875000$ | = | $-1 \cdot 2^{3} \cdot 3^{2} \cdot 5^{8} \cdot 7^{3} \cdot 17^{3} $ |
|
| j-invariant: | $j$ | = | \( -\frac{37017366745}{121331448} \) | = | $-1 \cdot 2^{-3} \cdot 3^{-2} \cdot 5 \cdot 7^{-3} \cdot 17^{-3} \cdot 1949^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3104543671461261574362180952$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.23749575885672590770237853972$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9085687600026063$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.9946697636066344$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.26041606455896730421330547293$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 6 $ = $ 1\cdot2\cdot1\cdot3\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.5624963873538038252798328376 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.562496387 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.260416 \cdot 1.000000 \cdot 6}{1^2} \\ & \approx 1.562496387\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 51840 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
| $3$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $5$ | $1$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
| $7$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $17$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B.1.2 | 3.8.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2856 = 2^{3} \cdot 3 \cdot 7 \cdot 17 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 122 & 2739 \\ 367 & 1435 \end{array}\right),\left(\begin{array}{rr} 2689 & 6 \\ 2355 & 19 \end{array}\right),\left(\begin{array}{rr} 2853 & 2854 \\ 2846 & 2849 \end{array}\right),\left(\begin{array}{rr} 2143 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1429 & 6 \\ 1431 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2851 & 6 \\ 2850 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 409 & 6 \\ 1227 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[2856])$ is a degree-$727720132608$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2856\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 2975 = 5^{2} \cdot 7 \cdot 17 \) |
| $3$ | split multiplicative | $4$ | \( 25 = 5^{2} \) |
| $5$ | additive | $14$ | \( 714 = 2 \cdot 3 \cdot 7 \cdot 17 \) |
| $7$ | split multiplicative | $8$ | \( 2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17 \) |
| $17$ | nonsplit multiplicative | $18$ | \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 17850.v
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 17850.be1, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-3}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.23800.1 | \(\Z/2\Z\) | not in database |
| $3$ | 3.1.6075.2 | \(\Z/3\Z\) | not in database |
| $6$ | 6.0.539250880000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.110716875.2 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $6$ | 6.0.15293880000.1 | \(\Z/6\Z\) | not in database |
| $9$ | 9.1.193441518169704000000.1 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.0.4981067568673789498224951729987664709067000000000000.2 | \(\Z/9\Z\) | not in database |
| $18$ | 18.0.1010329765698597914793873085632000000000000.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.0.32285701644039273500371026965059043328000000000000.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 17 |
|---|---|---|---|---|---|
| Reduction type | nonsplit | split | add | split | nonsplit |
| $\lambda$-invariant(s) | 7 | 1 | - | 1 | 0 |
| $\mu$-invariant(s) | 0 | 1 | - | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.