Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-1250938x-477065287\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-1250938xz^2-477065287z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1621215027x-22253094373554\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-1833/4, 1829/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 1785 \) | = | $3 \cdot 5 \cdot 7 \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $27004994294227023375$ | = | $3^{7} \cdot 5^{3} \cdot 7^{2} \cdot 17^{10} $ |
|
j-invariant: | $j$ | = | \( \frac{216486375407331255135001}{27004994294227023375} \) | = | $3^{-7} \cdot 5^{-3} \cdot 7^{-2} \cdot 17^{-10} \cdot 3709^{3} \cdot 16189^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4582009444526617952995899695$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.4582009444526617952995899695$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0169653291375447$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.176515032463915$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.14392404521398568810455118953$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 84 $ = $ 7\cdot3\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $3.0224049494936994501955749802 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 3.022404949 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.143924 \cdot 1.000000 \cdot 84}{2^2} \\ & \approx 3.022404949\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 40320 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$3$ | $7$ | $I_{7}$ | split multiplicative | -1 | 1 | 7 | 7 |
$5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$17$ | $2$ | $I_{10}$ | nonsplit multiplicative | 1 | 1 | 10 | 10 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 7140 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 5714 & 1 \\ 4283 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4762 & 1 \\ 4759 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 5356 & 1789 \\ 1785 & 5356 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1261 & 4 \\ 2522 & 9 \end{array}\right),\left(\begin{array}{rr} 7137 & 4 \\ 7136 & 5 \end{array}\right),\left(\begin{array}{rr} 6121 & 4 \\ 5102 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[7140])$ is a degree-$29108805304320$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/7140\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | good | $2$ | \( 15 = 3 \cdot 5 \) |
$3$ | split multiplicative | $4$ | \( 119 = 7 \cdot 17 \) |
$5$ | split multiplicative | $6$ | \( 21 = 3 \cdot 7 \) |
$7$ | split multiplicative | $8$ | \( 85 = 5 \cdot 17 \) |
$17$ | nonsplit multiplicative | $18$ | \( 105 = 3 \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 1785.o
consists of 2 curves linked by isogenies of
degree 2.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{15}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.849660.4 | \(\Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.2598919616160000.12 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.2.35523982503387.3 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 17 |
---|---|---|---|---|---|
Reduction type | ord | split | split | split | nonsplit |
$\lambda$-invariant(s) | 6 | 3 | 1 | 3 | 0 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 11$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.