Properties

Label 1785.o
Number of curves $2$
Conductor $1785$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1785.o have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(7\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1785.o do not have complex multiplication.

Modular form 1785.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} - q^{4} + q^{5} + q^{6} + q^{7} - 3 q^{8} + q^{9} + q^{10} - q^{12} + 4 q^{13} + q^{14} + q^{15} - q^{16} - q^{17} + q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 1785.o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1785.o1 1785n2 \([1, 0, 1, -1250938, -477065287]\) \(216486375407331255135001/27004994294227023375\) \(27004994294227023375\) \([2]\) \(40320\) \(2.4582\)  
1785.o2 1785n1 \([1, 0, 1, 115937, -38571787]\) \(172343644217341694999/742780064187984375\) \(-742780064187984375\) \([2]\) \(20160\) \(2.1116\) \(\Gamma_0(N)\)-optimal