Properties

Label 17784p
Number of curves $1$
Conductor $17784$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 17784p1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(13\)\(1 - T\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 17784p do not have complex multiplication.

Modular form 17784.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q + 3 q^{5} - q^{7} + 5 q^{11} - q^{13} + 3 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 17784p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
17784.s1 17784p1 \([0, 0, 0, -51276, -4473628]\) \(-79891143083008/93892851\) \(-17522659425024\) \([]\) \(61440\) \(1.4531\) \(\Gamma_0(N)\)-optimal