Properties

Label 17784j
Number of curves $1$
Conductor $17784$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 17784j1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(13\)\(1 + T\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 17784j do not have complex multiplication.

Modular form 17784.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} + 3 q^{7} + 3 q^{11} + q^{13} - 8 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 17784j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
17784.e1 17784j1 \([0, 0, 0, 309, -986]\) \(59007258/41743\) \(-2308220928\) \([]\) \(8832\) \(0.48511\) \(\Gamma_0(N)\)-optimal