Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-13251x-587122\)
|
(homogenize, simplify) |
\(y^2z=x^3-13251xz^2-587122z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-13251x-587122\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(247, 3348)$ | $2.7853818417954807663038132813$ | $\infty$ |
Integral points
\((247,\pm 3348)\)
Invariants
Conductor: | $N$ | = | \( 17784 \) | = | $2^{3} \cdot 3^{2} \cdot 13 \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $-4978381824$ | = | $-1 \cdot 2^{10} \cdot 3^{9} \cdot 13 \cdot 19 $ |
|
j-invariant: | $j$ | = | \( -\frac{344700718852}{6669} \) | = | $-1 \cdot 2^{2} \cdot 3^{-3} \cdot 7^{3} \cdot 13^{-1} \cdot 19^{-1} \cdot 631^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.98332499055655656322250280859$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.14360380424411937365614657775$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8902382749074425$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.096556129608556$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.7853818417954807663038132813$ |
|
Real period: | $\Omega$ | ≈ | $0.22248815334142283417372348416$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot2^{2}\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $4.9577156986544614569903918697 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.957715699 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.222488 \cdot 2.785382 \cdot 8}{1^2} \\ & \approx 4.957715699\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 24576 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $III^{*}$ | additive | 1 | 3 | 10 | 0 |
$3$ | $4$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
$13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$19$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2964 = 2^{2} \cdot 3 \cdot 13 \cdot 19 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 781 & 2 \\ 781 & 3 \end{array}\right),\left(\begin{array}{rr} 457 & 2 \\ 457 & 3 \end{array}\right),\left(\begin{array}{rr} 2963 & 2 \\ 2962 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 2963 & 0 \end{array}\right),\left(\begin{array}{rr} 1483 & 2 \\ 1483 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 989 & 2 \\ 989 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[2964])$ is a degree-$7434383523840$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2964\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 2223 = 3^{2} \cdot 13 \cdot 19 \) |
$3$ | additive | $2$ | \( 1976 = 2^{3} \cdot 13 \cdot 19 \) |
$13$ | nonsplit multiplicative | $14$ | \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \) |
$19$ | split multiplicative | $20$ | \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 17784g consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 5928l1, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.2964.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.26039617344.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | ord | ord | ord | nonsplit | ss | split | ord | ord | ss | ord | ord | ss | ord |
$\lambda$-invariant(s) | - | - | 1 | 1 | 1 | 1 | 1,1 | 2 | 1 | 1 | 1,1 | 1 | 1 | 1,1 | 1 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.