Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-2214x-40095\)
|
(homogenize, simplify) |
\(y^2z=x^3-2214xz^2-40095z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-2214x-40095\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(937/16, 11285/64)$ | $7.2237719660852578089746889767$ | $\infty$ |
$(-27, 0)$ | $0$ | $2$ |
Integral points
\( \left(-27, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 17784 \) | = | $2^{3} \cdot 3^{2} \cdot 13 \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $77787216$ | = | $2^{4} \cdot 3^{9} \cdot 13 \cdot 19 $ |
|
j-invariant: | $j$ | = | \( \frac{3811055616}{247} \) | = | $2^{11} \cdot 3^{3} \cdot 13^{-1} \cdot 19^{-1} \cdot 41^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.57125137898957590434209576391$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.48375689769815480067674887093$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9723339444161686$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.548035781928864$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $7.2237719660852578089746889767$ |
|
Real period: | $\Omega$ | ≈ | $0.69599615351011234134032496625$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot2\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.0277175022295211359879458193 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.027717502 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.695996 \cdot 7.223772 \cdot 4}{2^2} \\ & \approx 5.027717502\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 9984 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $III$ | additive | 1 | 3 | 4 | 0 |
$3$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
$13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$19$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2964 = 2^{2} \cdot 3 \cdot 13 \cdot 19 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1562 & 1 \\ 2183 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2225 & 742 \\ 740 & 2223 \end{array}\right),\left(\begin{array}{rr} 914 & 1 \\ 2507 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 992 & 1 \\ 1975 & 0 \end{array}\right),\left(\begin{array}{rr} 2961 & 4 \\ 2960 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[2964])$ is a degree-$1239063920640$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2964\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 741 = 3 \cdot 13 \cdot 19 \) |
$3$ | additive | $2$ | \( 1976 = 2^{3} \cdot 13 \cdot 19 \) |
$13$ | nonsplit multiplicative | $14$ | \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \) |
$19$ | nonsplit multiplicative | $20$ | \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 17784a
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 17784i1, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{741}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.6669.2 | \(\Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.2713409501049.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | ord | ord | ss | nonsplit | ord | nonsplit | ord | ord | ss | ord | ss | ord | ord |
$\lambda$-invariant(s) | - | - | 1 | 3 | 1,1 | 1 | 1 | 1 | 3 | 1 | 1,1 | 1 | 1,1 | 1 | 1 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.